메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Mohamed Rizon (King Saud University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS-SICE 2009
발행연도
2009.8
수록면
2,915 - 2,919 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, lip and eye features are applied to classify the human emotion through a set of irregular and regular ellipse fitting equations using Genetic algorithm (GA). South East Asian face is considered in this study. All six universally accepted emotions and one neutral are considered for classifications. The method which is fastest in extracting lip features is adopted in this study. Observation of various emotions of the subject lead to an unique characteristic of lips and eye. GA is adopted to optimize irregular ellipse and regular ellipse characteristics of the lip and eye features in each emotion respectively. That is, the top portion of lip configuration is a part of one ellipse and the bottom of different ellipse. Two ellipse based fitness equations are proposed for the lip configuration and relevant parameters that define the emotion are listed. One ellipse based fitness function is proposed for eye. The GA method approach has achieved reasonably successful classification of emotion. While performing classification, optimized values can mess or overlap with other emotions range. In order to overcome the overlapping problem between the emotions and at the same time to improve the classification, a neural network (NN) approach is implemented. The GA-NN based process exhibits a range of 83% - 90% classification of the emotion from the optimized feature of top lip, bottom lip and eye.

목차

Abstract
1. INTRODUCTION
2. FACE IMAGE PROCESSING
3.FEATURE EXTRACTION
4. EMOTION RECOGNITION USING GENETIC ALGORITHM
5. EMOTION CLASSIFICATION USING NEURAL NETWORK
6. EXPERIMENTAL RESULTS
7. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000767670