메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Wenxiang Dou (Waseda University) Jinglu Hu (Waseda University) Gengfeng Wu (Shanghai University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS-SICE 2009
발행연도
2009.8
수록면
142 - 146 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose a novel rule deductive method to mine the real demanded association rules for any given user. This method does not like the most existing methods that mine frequent itemsets starting from candidate two-itemsets to candidate (n-1)-itemsets with inductive method and produce huge rough rules on these frequent itemsets. On the contrary, it avoids producing huge amounts of frequent itemsets contained by their upper long frequent itemsets and can interact with users by making them pick up their interested items to deduce the final interesting association rules. Moreover, it can do dynamic response to users in any time when users want to check whether their interested frequent itemsets have been founded. Its several dynamic response strategies have been proposed. These dynamic response algorithms can find most long frequent itemsets in initial time. Therefore, users can find their interested rules in short time with high probability. So, our method also can be used applied in online data mining.

목차

Abstract
I. INTRODUCTION
II. INTERESTING RULES MINING BASED ON DEDUCTIVE METHOD IN THE STATIC SITUATION
III. INTERESTING RULES MINING BASED ON DEDUCTIVE METHOD IN THE DYNAMIC SITUATION
IV. EXPERIMENTS
V. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000772173