메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Chang Su Lee (Edith Cowan University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2011
발행연도
2011.10
수록면
1,340 - 1,344 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, a new approach is proposed for feature reduction using a GA-Rough hybrid approach on Bio-medical data. The given set of bio-medical data is pre-processed with the min-max normalization method. Then the subsequent evaluation on each feature with respect to the output class is carried out utilizing the information gain-based approach using the entropy-based discretization. Features with zero worth on the evaluated set of features are eliminated. The genetic algorithm is applied for performing a search for most relevant features on the set of features remained. These processes continue until there is no further change on the final reduced set of features. The rough set-based approach is applied on this set of features by applying discernibility matrix-based approach in order to obtain the final reduct. The reduced set of features, or a final reduct, is tested for classification using a TS-type rough-fuzzy classifier to show the viability of the proposed feature reduction approach. The results showed that the proposed feature reduction approach effectively achieved to reduce number of features significantly which reduced to 7 out of 120 features along with compatible classification results on the given bio-medical data compared to other approaches.

목차

Abstract
1. INTRODUCTION
2. EVALUATION ON FEATURES USING AN ENTROPY-BASED METHOD
3. GENETIC ALGORITHM FOR FEATURE SELECTION
4. ROUGH SET THEORY
5. GA- ROUGH HYBRID APPROACH FOR FEATURE REDUCTION
6. EXPERIMENTS AND RESULTS
7. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000914748