메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Liang Meiyu (Beijing University of Posts and Telecommunications) Du Junping (Beijing University of Posts and Telecommunications) Jia Yingmin (Beihang University) Sun Zengqi (Tsinghua University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2011
발행연도
2011.10
수록면
777 - 782 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
According to some flaws in the existing feature dimension reduction methods, a new method of two-step combined feature dimension reduction based on improved CHI algorithm and LSA algorithm is proposed in this paper. First, apply the improved CHI algorithm to realize the initial feature selection, resolve the problem of high dimension and sparseness in the feature space to a certain extent, and then use the LSA algorithm to extract the semantic structures in the initial feature space, and map it into the semantic feature space and realize the second dimension reduction. Experimental results indicate that this method of feature dimension reduction has a better performance, further improving the effect of topic tracking.

목차

Abstract
1. INTRODUCTION
2. FEATURE DIMENSION REDUCTION METHOD BASED ON EVALUATION FUNCTION
3. FEATURE DIMENSION REDUCTION METHOD BASED ON LSA ALGORITHM
4. FEATURE DIMENSION REDUCTION BASED ON THE IMPROVED CHI ALGORITHM AND LSA ALGORITHM
5. EXPERIMENTAL RESULTS AND ANALYSIS
6. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000913549