메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Joon-Hong Seok (KAIST) Joon-Yong Lee (KAIST) Changmok Oh (KAIST) Ju-Jang Lee (KAIST) Ho Joo Lee (Agency for Defense Development)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2011
발행연도
2011.10
수록면
692 - 697 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper addresses a planning method to generate well distributed multiple paths in a control space. For this purpose, we employ and combine rapidly-exploring random tree (RRT), evolutionary algorithm (EA) to compose a diverse multi-path planning (DMPP) algorithm. A population is composed of individuals which represent a path-set. Each individual includes a predefined number of feasible path generated by the RRT, one of the sampling-based planners. The proposed method works by building a population with a set of the predefined number of feasible paths by using the RRT, one of the sampling-based planners. As evolving the population with nature selection and genetic operators, more distributed set of the paths can be acquired. The proposed algorithm leads each path element of path-sets to diverge from each other gradually, so that feasible and different paths are well-generated. In order to evaluate the quality and diversity of a path-set, the costmap approach on path elements are also proposed. Experimental results show that the proposed multi-path planning method works well for generating a set of the diverse paths.

목차

Abstract
1. INTRODUCTION
2. BACKGROUND
3. DIVERSE MULTI-PATH PLANNING ALGORITHM
4. EXPERIMENTAL RESULTS
5. CONCLUSION
6. ACKNOWLEDGMENTS
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000913367