메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Arjon Turnip (Pusan National University) Keum-Shik Hong (Pusan National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2011
발행연도
2011.10
수록면
331 - 336 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, a new adaptive neural network classifier of six different mental tasks from EEG-based P300 signals is proposed. To overcome the classifier of overtraining caused by noisy and non-stationary data, the EEG signals are filtered and extracted using autoregressive model before passed to the adaptive neural network classifier. To test the improvement in the EEG classification performance with the proposed method, comparative experiments were conducted using Bayesian Linear Discriminant Analysis. All subjects achieved a classification accuracy of 100%.

목차

Abstract
1. INTRODUCTION
2. DATA SET AND EEG PREPROCESSING
3. FEATURE EXTRACTION ANDCLASSIFICATION
4. RESULTS AND DISCUSSIONS
5. CONCLUSIONS
ACKNOWLEDGMENT
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000912628