메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Loh Mun Yee (University Technology of Malaysia) Abdul Manan Ahmad (University Technology of Malaysia)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2008
발행연도
2008.10
수록면
2,290 - 2,293 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Speaker recognition is a process where a person is recognized on the basis of his/her voice signals. In this paper we provide a brief overview for evolution of pattern classification technique used in speaker recognition. The most common approach to speaker recognition is the use of global Gaussian Mixture Model (GMM). The dominant advantages of GMM approach is that speaker identification can be performed in a completely text independent environment. Besides, GMM are base on probabilistic framework, it provide high-accuracy recognition. However, GMM techniques does not work well in some situation due to it behavior of ignores knowledge of the underlying phonetic content of the speech. To overcome those shortages, the new classification Model is generated. We introduce a new hybrid Vector Quantization / Gaussian Mixture Models (VQ/GMM) model to improve recognition rate of the speaker identification system in the paper. Besides, we also concerns about a comparison performance of hybrid VQ/GMM, DTW, VQ, GMM and SVM techniques for speaker identification. Topics of how we construct hybrid VQ/GMM for speaker identification and experimental result for these 5 techniques are presented in this paper. Experiments in this study were performed using TIMIT speech database. Experimental result shows that hybrid VQ/GMM gain the best result among 5 types of classifier.

목차

Abstract
1. INTRODUCTION
2. PROPOSED SPEAKER RECOGNITION FRAMEWORK
3. HYBRID VECTOR QUANTIZATION/ GAUSSIAN MIXTURE MODELING
4. EXPERIMENTAL RESULTS
5. CONCLUSION
ACKNOWLEDGMENT
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000976942