메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2008
발행연도
2008.10
수록면
2,014 - 2,019 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of this paper is to describe the realization of speech emotion recognition. Generally, text-independent mode has been utilized for speech emotion recognition, hence previous researches have discounted that emotion features vary according to the text or phonemes, though this can distort the classification performance. To overcome this distortion, a framework of speech emotion recognition is proposed based on segmentation of voiced and unvoiced sound. Voiced and unvoiced sound have different characteristic of emotion features as vocalization between voiced sound and unvoiced sound is much different hence, they should be considered separately. In this paper, voiced and unvoiced sound classification is performed using spectral flatness measures and the spectral center, and a Gaussian mixture model with five mixtures was employed for emotion recognition. To confirm the proposed framework, two systems are compared: the first is emotion classification using whole utterances (ordinary method) and the second uses segments of voiced and unvoiced sound (proposed method). The proposed approach yields higher classification rates compared to previous systems in both cases using each of the emotion features (linear prediction coding (LPC), Mel-frequency cepstral coefficients (MFCCs), perceptual linear prediction (PLP) and energy) as well as a combination of these four features.

목차

Abstract
1. INTRODUCTION
2. SPEECH CORPUS
3. SEGEMENT-BASED FRAMEWORK
4. CLASIFFICATION METHOD
5. EXPERIMENTAL RESULTS
6. CONCLUSION
ACKNOWLEDGMENT
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000976366