메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Van Bao Tran Le (The Victoria University of Wellington) Sebastian Link (The University of Auckland) Mozhgan Memari (The University of Auckland)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.6 No.3
발행연도
2012.9
수록면
193 - 206 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Keys play a fundamental role in all data models. They allow database systems to uniquely identify data items, and therefore, promote efficient data processing in many applications. Due to this, support is required to discover keys. These include keys that are semantically meaningful for the application domain, or are satisfied by a given database. We study the discovery of keys from SQL tables. We investigate the structural and computational properties of Armstrong tables for sets of SQL keys. Inspections of Armstrong tables enable data engineers to consolidate their understanding of semantically meaningful keys, and to communicate this understanding to other stake-holders. The stake-holders may want to make changes to the tables or provide entirely different tables to communicate their views to the data engineers. For such a purpose, we propose data mining algorithms that discover keys from a given SQL table. We combine the key mining algorithms with Armstrong table computations to generate informative Armstrong tables, that is, key-preserving semantic samples of existing SQL tables. Finally, we define formal measures to assess the distance between sets of SQL keys. The measures can be applied to validate the usefulness of Armstrong tables, and to automate the marking and feedback of non-multiple choice questions in database courses.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. RELATED WORK
Ⅲ. THE SQL TABLE MODEL
Ⅳ. SCHEMA-DRIVEN SQL KEY DISCOVERY
Ⅴ. DATA-DRIVEN SQL KEY DISCOVERY
Ⅵ. INFORMATIVE ARMSTRONG TABLES
Ⅶ. EMPIRICAL MEASURES OF USEFULNESS
Ⅷ. CONCLUSION AND FUTURE WORK
ACKNOWLEDGMENTS
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-001379356