메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김득현 (연세대학교) 최진욱 (연세대학교) 오창재 (연세대학교) 손광훈 (연세대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 2012년도 한국방송공학회 하계 학술대회
발행연도
2012.7
수록면
83 - 86 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 다양한 변이 추정 방식 중 영역기반(Area-based) 알고리듬과 특정기반(Feature-based) 알고리듬을 결합한 하이브리드(Hybrid) 변이추정 알고리듬을 제안한다. 제안하는 알고리듬은 Features from Accelerated Segment Test(FAST) 코너 점 추출기[2]를 이용하여 좌, 우 영상 각각의 특징 점을 추출한 후, 특징 점들의 정보를 이용한 스테레오 정함을 통해 신뢰도 높은 초기 변이지도(Disparity map)를 생생하게 된다. 그러나 생성된 초기 변이지도는 조밀하지 못하므로, 조밀한 변이 지도를 획득하기 위해 특징점이 추출된 영역에 대해서는 추정된 초기 변이 값을 이웃 픽셀과의 색 유사도를 고려하여 전파시키고 특징 점이 추출되지 않은 영역에 대해서는 이진 윈도우(Binary window)를 활용한 영역기반 변이추정 알고리듬[1]을 이용하여 변이 값을 추정한다. 이를 통해, 제안 알고리듬은 특징 기반 알고리듬에서 발생할 수 있는 보간법 문제를 해결함과 동시에 신뢰도가 높은 초기 변이지도를 사용함으로써, 영역 기반 알고리듬의 정합 오차를 줄여 신뢰도 높은 변이지도를 생생할 수 있다. 실험 결과 추정된 초기 변이지도는 ground truth와 비교 시 약 99%이상의 정확도를 보이며, 특징 점이 추출된 영역에서 기존의 영역기반 알고리듬보다 더 정확한 변이 값이 추정되었음을 확인하였다.

목차

요약
1. 서론
2. 본론
3. 실험 결과
4. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-568-001417661