메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Bo-Hwan Seo (LG Electronics) Thanh Hai Nguyen (Yeungnam University) Dong-Choon Lee (Yeungnam University) Kyo-Beum Lee (Ajou University) Jang-Mok Kim (Pusan National University)
저널정보
전력전자학회 JOURNAL OF POWER ELECTRONICS JOURNAL OF POWER ELECTRONICS Vol.12 No.5
발행연도
2012.9
수록면
778 - 786 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, a novel scheme for the condition monitoring of lithium polymer batteries is proposed, based on the sigma-point Kalman filter (SPKF) theory. For this, a runtime-based battery model is derived, from which the state-of-charge (SOC) and the capacity of the battery are accurately predicted. By considering the variation of the serial ohmic resistance (Ro) in this model, the estimation performance is improved. Furthermore, with the SPKF, the effects of the sensing noise and disturbance can be compensated and the estimation error due to linearization of the nonlinear battery model is decreased. The effectiveness of the proposed method is verified by Matlab/Simulink simulation and experimental results. The results have shown that in the range of a SOC that is higher than 40%, the estimation error is about 1.2% in the simulation and 1.5% in the experiment. In addition, the convergence time in the SPKF algorithm can be as fast as 300 s.

목차

Abstract
I. INTRODUCTION
II. MODEL AND STATE EQUATIONS OF LITHIUMBATTERIES
III. PROPOSED APPROACH
IV. PARAMETER IDENTIFICATION OF LITHIUMBATTERIES
V. SIMULATION RESULTS
VI. EXPERIMENTAL RESULTS
VII. CONCLUSIONS
ACKNOWLEDGEMENT
REFERENCES

참고문헌 (25)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-560-003196514