메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
변제성 (인하대학교) 강전일 (인하대학교) 양대헌 (인하대학교) 이경희 (수원대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제22권 제4호
발행연도
2012.8
수록면
761 - 770 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
컴퓨터와 사람을 구분하기 위한 수단인 캡차는 광고, 스팸 메일, DDoS 등의 공격을 하는 자동화된 봇을 막기 위해 널리 사용되고 있다. 초창기에는 문자가 출력된 이미지를 왜곡시켜 이를 컴퓨터가 식별하기 어렵도록 하는 방식이 주로 사용되었지만, 이러한 방법들은 인공지능 기법이나 이미지 처리 기법으로 쉽게 무력화 될 수 있음이 여러 연구들을 통해 밝혀졌다. 그러한 이유에서 문자 기반 캡차의 대안으로 이미지를 사용하는 캡차가 주목받게 되었고 그에 따라 여러 가지 형태의 이미지 기반 캡차가 제안되었다. 하지만 텍스트 기반 캡차보다 높은 보안성을 제공하기 위해서는 많은 양의 소스 이미지가 필요하였다. 이에 따라 강전일(2008) 등은 소규모의 이미지 데이터베이스를 이용한 이미지 기반 캡차를 제안하였다. 이 캡차는 사용자 실험을 통해 현재 널리 사용되는 문자 기반 캡차에 비해 사용자 편의성을 보였지만, 아직 안전성이 검증되지 않았다. 이 논문에서는 강전일(2008)등이 제안한 복수의 이미지를 합성하여 사용하는 캡차를 실제로 공격해봄으로써 해당 캡차의 안전성을 검증해 보았다.

목차

요약
ABSTRACT
I. 서론
II. 관련연구
III. 기계 학습(Machine learning)을 통한 공격 및 보안성 분석
IV. 결론
참고문헌

참고문헌 (25)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-003278223