메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김광훈 (부산대학교) 박정홍 (부산대학교) 손권 (부산대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제16권 제9호
발행연도
2010.9
수록면
827 - 832 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Many researchers have tried to detect the falling and to reduce the injury associated with falling. Normally the method of detection of a loss of balance is more efficient than that of a compensatory motion in order to predict the falling. The detection algorithm of the loss of balance was composed of three main parts: parts of processing of measured data, construction of an internal model and detection of the loss of balance. The internal model represented a simple dynamic motion balancing with two rear legs of a four-legged chair and was a simplified model of a central nervous system of a person. The internal model was defined by the experimental data obtained within a fixed time interval, and was applied to the detecting algorithm to the end of the experiment without being changed. The balancing motion controlled by the human brain was improved in process of time because of the experience accruing to the brain from controlling sensory organs. In this study a reconstruction method of the internal model was used in order to improve the success rate and the detecting time of the algorithm and was changed with time the same as the brain did. When using the reconstruction method, the success rate and the detecting time were 95 % and 0.729 sec, respectively and those results were improved by about 7.6 % and 0.25 sec in comparison to the results of the paper of Ahmed and Ashton-Miller. The results showed that the proposed reconstruction method of the internal model was efficient to improve the detecting performance of the algorithm.

목차

Abstract
Ⅰ. 서론
Ⅱ. 연구 방법
Ⅲ. 실험 및 결과
Ⅳ. 결론
참고문헌

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-003276870