메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Song Yi Kim (Sangmyung University) Sue Jin Noh (Sangmyung University) Jinman Kim (Sangmyung University) Mincheol Whang (Sangmyung University) Eui Chul Lee (Sangmyung University)
저널정보
대한인간공학회 대한인간공학회지 대한인간공학회지 제31권 제4호
발행연도
2012.8
수록면
601 - 607 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Objective: The aim of this study is to classify between intentional and natural blinks in vision based eye tracking system. Through implementing the classification method, we expect that the great eye tracking method will be designed which will perform well both navigation and selection interactions. Background: Currently, eye tracking is widely used in order to increase immersion and interest of user by supporting natural user interface. Even though conventional eye tracking system is well focused on navigation interaction by tracking pupil movement, there is no breakthrough selection interaction method. Method: To determine classification threshold between intentional and natural blinks, we performed experiment by capturing eye images including intentional and natural blinks from 12 subjects. By analyzing successive eye images, two features such as eye closed duration and pupil size variation after eye open were collected. Then, the classification threshold was determined by performing SVM(Support Vector Machine) training. Results: Experimental results showed that the average detection accuracy of intentional blinks was 97.4% in wearable eye tracking system environments. Also, the detecting accuracy in non-wearable camera environment was 92.9% on the basis of the above used SVM classifier. Conclusion: By combining two features using SVM, we could implement the accurate selection interaction method in vision based eye tracking system. Application: The results of this research might help to improve efficiency and usability of vision based eye tracking method by supporting reliable selection interaction scheme.

목차

ABSTRACT
1. Introduction
2. Method
3. Results
4. Discussion
5. Conclusion
Acknowledgements
References

참고문헌 (20)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-530-003391459