메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍승택 (아주대학교) 최진영 (아주대학교) 박상철 (아주대학교)
저널정보
대한산업공학회 산업공학 (IE interfaces) 산업공학 (IE interfaces) 제24권 제3호
발행연도
2011.9
수록면
267 - 273 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the shipbuilding industry, since production processes are so complicated that the data collection for decision making cannot be fully automated, most of production planning and controls are based on the information provided only by field workers. Therefore, without sufficient information it is very difficult to manage the whole production process efficiently. Job status is one of the most important information used for evaluating the remaining processing time in production control, specifically, in block assembly shop. Currently, it is checked by a production manager manually and production planning is modified based on that information, which might cause a delay in production control, resulting in performance degradation. Motivated by these remarks, in this paper we propose an efficient algorithm for identifying job status in block assembly shop for shipbuilding. The algorithm is based on the multi-layer perceptron neural network model using two key factors for input parameters. We showed the superiority of the algorithm by using a numerical experiment, based on real data collected from block assembly shop.

목차

1. 서론
2. 작업상태 모니터링 방법
3. 다계층 퍼셉트론 모델 기반 작업상태 판별 알고리즘
4. 실험을 통한 모델 검증
5. 결론 및 향후과제
참고문헌

참고문헌 (9)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-530-003614842