메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yung-Chung Chen (Shu-Te University 59) Shih-Ying Tsai (Shu-Te University 59) Peter Chen (Berlin Company Limited)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems 제7권 제1호
발행연도
2008.6
수록면
51 - 56 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
With growing demand for zero defects, predicting reliability of software systems is gaining importance. Software reliability models are used to estimate the reliability or the number of latent defects in a software product. Most reliability models to estimate the reliability of software in the literature are based on the development lifecycle stages. However, in the maintenance phase, the software needs to be corrected for errors and to be enhanced for the requests from users. These decrease the reliability of software. Software Reliability Growth Models (SRGMs) have been applied successfully to model software reliability in development phase. The software reliability in maintenance phase exhibits many types of systematic or irregular behaviors. These may include cyclic behavior as well as long-term evolutionary trends. The cyclic behavior may involve multiple periodicities and may be asymmetric in nature. In this paper, SGRM has been adapted to develop a reliability prediction model for the software in maintenance phase. The model is established using maintenance data from a commercial shop floor control system. The model is accepted to be used for resource planning and assuring the quality of the maintenance work to the user.

목차

Abstract
1. INTRODUCTION
2. NHPP MODEL
3. MODELS FOR MAINTENANCE PHASE
4. PRESENTED MODEL FOR MAINTENANCE PHASE
5. METHOD FOR PARAMETER ESTIMATION
6. NUMERICAL EXAMPLE
7. DISCUSSION AND CONCLUSION
ACKNOWLEDGEMENT
REFERENCES

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-530-002615270