메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Pornthipa Ongkunaruk (Kasetsart University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems 제7권 제2호
발행연도
2008.9
수록면
126 - 132 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The bin packing problem (BPP) is an NP-Complete Problem. The problem can be described as there are N = {1, 2, …, n } which is a set of item indices and L = {s1, s2, …, sn} be a set of item sizes sj, where 0 <sj ≤ 1,∀ j ∈ N. The objective is to minimize the number of bins used for packing items in N into a bin such that the total size of items in a bin does not exceed the bin capacity. Assume that the bins have capacity equal to one. In the past, many researchers put on effort to find the heuristic algorithms instead of solving the problem to optimality. Then, the quality of solution may be measured by the asymptotic worst-case ratio or the average-case ratio. The First Fit Decreasing (FFD) is one of the algorithms that its asymptotic worst-case ratio equals to 11/9. Many researchers prove the asymptotic worst-case ratio by using the weighting function and the proof is in a lengthy format. In this study, we found an easier way to prove that the asymptotic worst-case ratio of the First Fit Decreasing (FFD) is not more than 11/9. The proof comes from two ideas which are the occupied space in a bin is more than the size of the item and the occupied space in the optimal solution is less than occupied space in the FFD solution. The occupied space is later called the weighting function. The objective is to determine the maximum occupied space of the heuristics by using integer programming. The maximum value is the key to the asymptotic worst-case ratio.

목차

Abstract
1. INTRODUCTION
2. LITERATURE REVIEW
3. THEOREM AND PROOF
4. CONCLUSION
ACKNOWLEDGMENT
REFERENCES
APPENDIX

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-530-002615154