메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Il Im (연세대학교) Byung Ho Kim (연세대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제18권 제2호
발행연도
2012.6
수록면
131 - 141 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 협업필터링(collaborative filtering : CF) 기반한 추천시스템의 정확도를 높일 수 있는 방법을 제안하고 그 효과를 분석한다. 일반적인 CF기반 추천시스템에서는 시스템 세팅(참조집단 크기, 유의도 수준 등)을 한 가지 정해서 모든 경우에 대해서 동일하게 적용한다. 본 논문에서는 개별 사용자의 특성에 따라 이러한 세팅을 최적화 해서 개별적으로 적용하는 방법을 개발하였다. 이런 개인화된 세팅의 효과를 측정하기 위해서 Netflix의 자료를 사용해서 일반적인 추천시스템과 추천 정확도를 비교하였다. 분석 결과, 동일한 세팅을 적용하는 일반적인 추천시스템에 비해서 개인화된 세팅을 적용한 경우 정확도가 월등히 향상됨을 확인하였다. 이 결과의 시사점과 함께 미래 연구의 방향에 대해서도 논의한다.

목차

1. Introduction
2. CF-Based Recommender Systems
3. Evaluation
4. Conclusions
References
Abstract
저자소개

참고문헌 (14)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-003-002624986