메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Heonho Choi (Sungkyunkwan University) Jihwan Kim (Sungkyunkwan University) Heewoong Jeong (Sungkyunkwan University) Sulki Lee (Sungkyunkwan University) Seongil Lee (Sungkyunkwan University)
저널정보
대한인간공학회 대한인간공학회 학술대회논문집 대한인간공학회 2012 30주년 기념 춘계학술대회 제 14회 한·일 공동심포지엄
발행연도
2012.5
수록면
136 - 143 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Objective: The aim of this study is to investigate the way to distinguish and use gestures by the quantification through the handheld device included an acceleration sensor and gyro sensor in order to use the gesture with ease and common. Background: People use the hands and hand gestures to express one’s emotion or intend to not only other people but the machine and computer. To offer the affordance and comfortability through the gestures, there have been many researches on the development of gesture-based interfaces. Method: We quantified the gestures by the handheld device looks like TV remote controller included the acceleration sensor and gyro sensor on arduino platform. (1) collecting the values of acceleration sensor and gyro sensor occurred by the gesture, (2) searching the patterns of the sensor values and the approximate cycle of each gesture through the collected data, (3) setting the representative value of sensors which could be used as the index for chi square test. (4) We made the gesture set including the 10 gestures and distinguish user’s one gesture from the category of gestures using chi square test. Results: We did the pilot test with 10 participants and drew the result. It was found that accuracy of distinguishment of gestures is about 90%. Conclusion: It was suggested that gesture could be quantified to certain values not the array of values by the acceleration sensor and gyro sensor and used as representative values of gestures. And it was the chi square test that distinguishes the gesture user made from the gesture set. Application: The study is expected to provide the easy and economical way to distinguish the gestures without the large data set.

목차

ABSTRACT
1. Introduction
2. Method
3. Results
4. Conclusion
Acknowledgements
References
Author listings

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0