메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김기백 (숭실대학교) 유제웅 (서울대학교) 조남익 (서울대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제17권 제3호
발행연도
2012.5
수록면
519 - 528 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
음성구간을 검출하는 일반적인 방법은 음향신호로부터 특징값을 추출하여 판별식을 거치는 것이다. 그러나 잡음이 많은 환경에서 그 성능은 당연히 저하되며, 이 경우 영상신호를 이용하거나 영상과 음성을 동시에 사용함으로써 성능향상을 도모할 수 있다. 영상신호를 이용하여 음성구간을 검출하는 기존 방법들에서는 액티브 어피어런스 모델, 옵티컬 플로우, 밝기 변화 등 주로 하나의 특징값을 이용하고 있다. 그러나 음성구간의 참값은 음향신호에 의해 결정되므로 한 가지의 영상정보만으로는 음성구간을 검출하는데 한계를 보이고 있다. 본 논문에서는 입술 영역의 옵티컬 플로우와 밝기 변화 두 가지 영상정보로부터 특징값을 추출하고, 추출된 특징값들을 결합하여 음성구간을 검출하는 알고리즘을 제안하고자 한다. 또한, 음성구간 검출 알고리즘이 다른 시스템의 전처리로 활용되는 경우에 적은 계산량만으로 수행되는 것이 바람직하므로, 통계적 모델링에 의한 방법보다는 추출된 특징값으로부터 간단한 대수적 연산만으로 스코어를 산정하여 문턱값과 비교하는 방법을 제안하고자 한다. 입술 영역 검출을 위해서는 얼굴에서 가장 두드러진 특징점을 갖는 눈을 먼저 검출한 후, 얼굴의 구조와 밝기값을 이용하는 알고리즘을 제안하였다. 실험 결과 본 논문에서 제안하는 두 가지 특징값을 결합한 음성구간 검출 알고리즘이 하나의 특징값만을 이용했을 때보다 우수한 성능을 보임을 확인할 수 있다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 음성구간 검출을 위한 특징값 추출
Ⅲ. 음성구간 검출 과정
Ⅳ. 얼굴 및 입술 영역 검출
Ⅳ. 실험 결과
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (23)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0