메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김남원 (서울대학교) 박진수 (서울대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제18권 제1호
발행연도
2012.3
수록면
91 - 107 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인터넷의 성장과 개인의 참여는 사생활 정보 보호에 관련된 비효율적 관리 방안에 대한 문제의식을 불러일으키고 있으며 이를 해결하기 위한 여러 연구들이 이루어지고 있다. 본 연구에서는 기존에 존재하는 문서 분류 방법론을 이용하여 개인의 사적 공간을 나타내는 프라이버시의 항목 중 개인을 식별할 수 있거나 개인이 민감해 할 수 있는 사생활 정보를 담고 있는 문서를 탐지 혹은 분류하는 방법에 대해서 다룬다. 논문의 실험에서 기존의 학습데이터에 추가적으로 개인정보의 유형에 관련된 하위 학습 데이터를 추가함으로써 자동 문서 분류 알고리즘의 성능 측정치를 높이는 것을 시도하였다. 또한 개인정보의 유형에 따라 알고리즘에 효과적으로 적용하는 방향을 제시하기 위하여 기존 논문에서 나타난 개인정보의 유형들을 분석하였다. 개인정보 관련 문서로 분류된 학습 대상과 함께 개인정보에 영향력이 있는 개인정보 유형들을 추가 학습시켜 알고리즘이 학습하는 문서 자질(feature)의 질(quality)을 높였다. 높아진 학습 자질의 질로 인하여 기존의 Naive Bayes 방법론을 이용한 평가 측정치가 높아질 수 있었다.

목차

1. 서론
2. 관련 연구
3. 연구 방법론
4. 실험 디자인 및 구현
5. 실험 및 결과
6. 결론 및 향후 연구 과제
참고문헌
Abstract
저자소개

참고문헌 (38)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0