메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김성환 (부산대학교) 조환규 (부산대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제12권 제3호
발행연도
2012.3
수록면
34 - 43 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
두 문자열 간의 유사도를 계산하는 문제는 정보 검색, 오타 교정, 스팸 필터링 등 다양한 분야에 응용될 수 있다. 동적 계획법 기반의 유사도 계산 방법을 통하여 한글 문자열의 유사도 계산을 위해서는 우선 음소간의 유사도에 대한 정의가 필요하다. 그러나 기존의 방법들은 수동적 설정에 의한 유사도 점수를 사용하고 있다는 한계점이 있다. 본 논문에서는 PAM(Point Accepted Mutation) 행렬과 유사한 확률 모델을 이용하여 변형 단어 집합으로부터 음소 간의 유사도를 자동적으로 계산하는 기법을 제안한다. 제안 기법은 주어진 변형 단어의 집합 내 유사한 단어 쌍을 찾아 문자열 정렬(Text Alignment)을 수행함으로써 음소변형 규칙을 도출하고, 이로부터 각 음소 쌍의 상호 변형 빈도에 따른 유사도 점수를 계산한다. 실험 결과 특이도(Specificity) 77.2?80.4% 수준에서 불일치 여부에 따른 단순 점수 부여 방식에 비해서는 10.4?14.1%, 수동으로 음소 간 유사도를 직접 설정하는 방식에 비해서는 8.1?11.8%의 민감도(Sensitivity) 향상이 있음을 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안 기법
Ⅳ. 실험 및 결과
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (9)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-004-001669400