메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Honey Durga Tiwari (Konkuk University) Ganzorig Gankhuyag (Konkuk University) Chan Mo Kim (Konkuk University) Yong Beom Cho (Konkuk University)
저널정보
대한전자공학회 대한전자공학회 ISOCC ISOCC 2008 Conference
발행연도
2008.11
수록면
504 - 507 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Vedic mathematics is the name given to the ancient Indian system of mathematics that was rediscovered in the early twentieth century from ancient Indian sculptures (Vedas). It mainly deals with Vedic mathematical formulae and their application to various branches of mathematics. The algorithms based on conventional mathematics can be simplified and even optimized by the use of Vedic Sutras. These methods and ideas can be directly applied to trigonometry, plain and spherical geometry, conics, calculus (both differential and integral), and applied mathematics of various kinds. In this paper new multiplier and square architecture is proposed based on algorithm of ancient Indian Vedic Mathematics, for low power and high speed applications. It is based on generating all partial products and their sums in one step. The design implementation on ALTERA Cyclone ?Ⅱ FPGA shows that the proposed Vedic multiplier and square are faster than array multiplier and Booth multiplier.

목차

Abstract
Ⅰ. INTRODUCTION (HEADING 1)
Ⅱ. VEDIC FORMULAE
Ⅲ. IMPLEMENTATION AND RESULTS
Ⅳ. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-001759389