메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김민호 (경북대학교) 최두현 (경북대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제14권 제10호
발행연도
2011.10
수록면
1,243 - 1,251 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 차량의 헤드라이트 영상에 Scale Invariant Feature Transform(SIFT) 알고리즘을 적용하여 획득한 특징점을 이용하여 차량의 모델을 인식하는 차종 인식 방법을 제안한다. 보다 정확도 높은 차종 인식을 구현하기 위해서 특징점들의 분포로부터 동질성(homogeneity)을 계산하여 인식 정확성의 척도로 두었다. 제안한 방법의 성능을 평가하기 위해 국내 54종의 차량 영상으로부터 촬영된 400장의 실험 영상을 이용해 실험한 결과, 제안한 방법은 90%의 인식률과 16.45의 평균 동질성을 보였다.

목차

요약
ABSTRACT
1. 서론
2. 관련 연구
3. 차종 인식을 위한 전처리 단계
4. 차종 인식 및 실험 결과
5. 결론
참고문헌

참고문헌 (4)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-004-001291982