메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
조동찬 (한양대학교) 얍와셍 (한양대학교) 윤재호 (현대모비스) 김회율 (한양대학교)
저널정보
한국자동차공학회 한국자동차공학회 추계학술대회 및 전시회 2011년 한국자동차공학회 학술대회 및 전시회
발행연도
2011.11
수록면
1,692 - 1,698 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Vehicle detection using a camera has been studied actively for a couple of decades in the intelligent vehicle system. Especially, vehicle detection at nighttime has several difficulties because of lack of light. Most of night vehicle detection methods use a high dynamic range (HDR) camera or tune brightness of a camera to capture only light regions. However, the camera we use does not have HDR property and is tuned for lane departure warning system (LDWS). Therefore, the brightness of the camera is fixed to capture lanes on the road even at night and the white balance of the camera is changed to boost white and yellow. In this paper, we propose an effective vehicle detection method using non-HDR camera. The proposed method consists of two main parts; light segmentation and pairing. In the light segmentation part, candidate lights are segmented from an original image using a novel adaptive threshold method. Features for a classifier are extracted from each candidate light. Candidate lights are classified as tail, head, and other lights using a random forest classifier. In the pairing part, only tail lights are handled to detect preceding vehicles. Two tail lights whose Y axis position difference is smaller than threshold are collected as a pairing candidate. Features for pairing classification are extracted from the pairing candidates. Random forest classifier is also used to classify pairing candidates as a vehicle or a non-vehicle. Experiments show that the proposed method effectively detects vehicles in the several different environments.

목차

Abstract
1. 서론
2. 시스템 구성
3. 불빛 검출
4. Pairing
5. 차량 추적
6. 실험
7. 결론
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-556-001415227