메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
한다정 (전남대학교) 박아론 (전남대학교) 박준규 (전남대학교) 백성준 (전남대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제11권 제12호
발행연도
2011.12
수록면
497 - 503 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 환경음 인식 성능의 향상을 위하여 GMM의 훈련 방식에 MCE 도입을 제안하였다. 이는 환경음 데이터 모델링에 사용할 분류오류함수를 정의할 때 해당 클래스의 로그우도 뿐 아니라 다른 클래스의 로그우도도 같이 고려함으로써 변별력 있는 분류가 이뤄질 수 있게 한다. 모델의 파라미터는 전체 클래스를 고려한 손실함수를 정의하고, GPD(generalized probabilistic descent)알고리즘을 이용하여 추정하였다. 제안된 방법의 인식 성능 비교를 위해 모두 9가지 환경음을 전처리 과정과 MFCC(mel-frequency cepstral coefficients)를 이용하여 12차 특징을 추출하고, 이를 혼합 성분의 수에 따라 GMM 분류 실험을 행하였다. 실험 결과에 따르면 혼합 성분을 19개 사용한 경우에서 MCE 훈련 방식이 평균 87.06%의 인식률로 가장 좋은 성능을 보였다. 이 결과로 제안한 MCE 훈련 방식이 환경음 인식에서 GMM의 훈련 방식으로 효과적으로 사용될 수 있음을 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 실험 데이터와 전처리
Ⅲ. GMM 훈련 알고리즘
Ⅳ. 실험결과
Ⅴ. 결론
참고문헌

참고문헌 (15)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-004-001398677