메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Tae-Hyeong Yi (Korea Aerospace Research Institute)
저널정보
한국전산유체공학회 한국전산유체공학회 학술대회논문집 한국전산유체공학회 2011년도 추계학술대회
발행연도
2011.11
수록면
337 - 343 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A computational fluid dynamics code with adaptive mesh refinement for three-dimensional, multi-species, Euler equations is developed to investigate the phenomena of a detonation wave. A gas is assumed to be thermally perfect and in chemically non-equilibrium. The stiffness due to chemical reactions is properly taken care of by using a time-operator splitting method. By this method, the governing equations can be divided into two steps: homogeneous partial differential equations for the fluid dynamics and ordinary differential equations for chemical reactions. In the first step, a finite volume approach with a cell-centered scheme is employed for spatial integration. For temporal terms, the equations are discretized by a second-order, three-step Runge-Kutta method. The second step is a system of ordinary differential equations. This system of ordinary differential equations can be solved using a variable-coefficient ordinary differential equation. Detailed chemistry of a hydrogen and air mixture extracted from GRI-Mech is involved in this study. Due to a large range of spatial scales in detonation simulations, adaptive mesh refinement is employed to prevent poor numerical efficiency that causes an increase in computational time and resources. Code verification is performed with a non-reacting wedge flow and a detonation wave propagating in one- and two-dimensional rectangular tubes.

목차

1. Introduction
2. Governing Equations
3. Numerical Methods
4. Code Verification
5. Conclusion
Reference

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-422-001395878