메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
K. Ravikumar (Chungnam National University) Byung-Soon Kim (Chungnam National University) Young-A Son (Chungnam National University)
저널정보
한국염색가공학회 한국염색가공학회지 한국염색가공학회지 Vol. 20 No.2
발행연도
2008.4
수록면
19 - 28 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The objective of this study was to apply the statistical technique known as design of experiments to optimize the % exhaustion variables for phthalocyanine dyeing of nylon fiber. In this study, a three-factor Central Composite Rotatable Design (CCRD) was used to establish the optimum conditions for the phthalocyanine reactive dyeing of nylon fiber. Temperature, pH and liquor ratio were considered as the variable of interest. Acidic solution with higher temperature and lower liquor ratio were found to be suitable conditions for higher % exhaustion. These three variables were used as independent variables, whose effects on % exhaustion were evaluated. Significant polynomial regression models describing the changes on % exhaustion and % fixation with respect to independent variables were established with coefficient of determination, R2, greater than 0.90. Close agreement between experimental and predicted yields was obtained. Optimum conditions were obtained using surface plots and Monte Carlo simulation techniques where maximum dyeing efficiency is achieved. The significant level of both the main effects and interaction was observed by analysis of variance (ANOVA) approach. Based on the statistical analysis, the results have provided much valuable information on the relationship between response variables and independent variables. This study demonstrates that the CCRD could be efficiently applied for the empirical modeling of % exhaustion and % fixation in dyeing. It also shows that it is an economical way of obtaining the maximum amount of information in a short period of time with least number of experiments.

목차

1. Introduction
2. Factorial experimental design and data analysis
3. Experimental methods
4. Results and discussions
5. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0