메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Keita Ohe (Okayama University) Koichi Nakano (Okayama University) Yoshihiro Abe (Okayama University) Masami Konishi (Okayama University)
저널정보
대한전자공학회 ITC-CSCC :International Technical Conference on Circuits Systems, Computers and Communications ITC-CSCC : 2008
발행연도
2008.7
수록면
797 - 800 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Currently, operators try to improve their operating situation under the changing production circumstances. Their operations are some kinds of empirical fruits of manufacturing experiences. It is an important problem in the future to maintain and to extend their technologies having been built up. For the purpose, methods and systems for technical inheritance of advanced techniques like the skilled engineers are needed which can train the unskilled operators and also assist skilled operators. In this research, simulation technology for hot strip rolling mills based on distributed agents is presented aimed to the diagnosis of hot strip rolling mills with controllers. In the operation of hot strip mills, human operators try to maintain rolling conditions in an appropriate situation. To help the operators, it is needed to build an intelligent rolling simulator which can check the whole rolling performances including control apparatus. To help human experts, it is necessary to simulate rolling phenomenon considering operating conditions in detail. It is also required to simulate results by changing control parameters. Visualization of three-dimensional rolling process, and simulation of defects in rolling mills that scarcely occur are studied. In the paper, development of agent based rolling simulator is presented.

목차

Abstract
1. Introduction
2. Agent based simulation model
3. Mathematical model for hot rolling mills
4. Simulation result
5. Application to diagnosis
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-001140511