메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yiping, Dong (Waseda University) Takahiro, Watanabe (Waseda University)
저널정보
대한전자공학회 ITC-CSCC :International Technical Conference on Circuits Systems, Computers and Communications ITC-CSCC : 2008
발행연도
2008.7
수록면
601 - 604 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Artificial neural networks (ANNs) are widely used in various applications such as recognition, security, computer learning and so on. A two hidden layers Back-Propagation ANN (BP-ANN) is a typical one. But BP-ANNs are hard to be implemented in hardware due to interconnections and cost. Recently, Networkson-Chips (NoCs) where a packet-based network is used routing on-chip signals, have begun to attract as a smart structure to solve the interconnect problem. It can also map one or more logical units into a single physical hardware unit and connect with on router.
In this paper we propose a system with NoCs structure to mapping 5 neurons in one router for the two hidden layers BP-ANNs. Our system is evaluated for the latency and throughput using NIRGAM NoCs simulator, and is implemented on an FPGA device to estimate system performance and power consumption. Experimental results show that our proposed system has a great reduction in communication load, low latency and a high throughput. It is also reconfigurable and expandable to meet various NN application problems, and besides, not only BP-ANNs but also a random-connected ANNs or any type ANNs can be implemented in the system by adjusting a routing algorithm of NoC.

목차

Abstract
1. Two hidden layers BP-ANNs algorithm
2. NoC structure for BP-ANNs
3. Evaluation of this system
4. FPGA Implementation and Conclusions
Acknowledgement
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-001140026