메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임정수 (목포대학교) 장준혁 (한양대학교)
저널정보
대한전자공학회 전자공학회논문지-SP 電子工學會論文誌 第48卷 SP編 第5號
발행연도
2011.9
수록면
102 - 108 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Support vector machine (SVM)은 패턴인식 분야에 많이 사용되어지고 있고 그 한 예로서 3GPP2 selectable mode vocoder (SMV)와 같은 규격화된 코덱에 쓰여 코덱의 음성/음악 분류 성능을 향상시킬 수 있다. 본 논문에서는 SVM을 개선시켜 음성/음악의 분류성능을 더욱 향상시키는 새로운 방법을 제안한다. 음성/음악신호의 각 프레임들은 서로 강한 상관관계를 가지고 있는데, 이를 바탕으로 2차 조건 사후 최대 확률기법을 SVM에 적용하여 음성/음악 분류성능을 향상시킨다. 또한 SVM을 학습시킬 때 적용되는 기존의 기법들과는 달리 제안되는 기법은 SVM이 패턴분류를 행할 때 사용된다. 그렇기 때문에 기존의 기법들과 독립적으로 개발되고 사용될 수 있고, 따라서 패턴분류의 성능을 한층 더 향상시킬 수 있다. 실험을 통해 제안된 기법의 독립성과 성능향상을 기존의 기법들과 비교하여 증명하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. SMV와 SVM의 개요
Ⅲ. 2차 조건 MAP (maximum a posteriori)를 이용한 향상된 SVM
Ⅳ. 실험
Ⅴ. 결론
감사의 글
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-000768079