메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
李國杓 (인하대학교) 姜聲俊 (여수대학교) 張東勳 (인하대학교) 尹英燮 (인하대학교)
저널정보
대한전자공학회 전자공학회논문지-SD 電子工學會論文誌 第38卷 SD編 第8號
발행연도
2001.8
수록면
1 - 12 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 MFSFET (Metal-Ferroelectric-Semiconductor FET) 소자의 모델링을 바탕으로 adaptive learning 회로를 설계하고 그 수치적인 결과를 분석하였다. Adaptive learning 회로에서 출력주파수는 MFSFET 소자의 소스-드레인 저항과 캐패시턴스에 반비례하는 특성을 보여주었다. Short pulse 수에 따른 포화드레인 전류곡선은 강유전체의 분극반전 특성과 유사함을 확인할 수 있었고, 이는 강유전체 분극이 MFSFET 소자의 드레인 전류조절에 핵심적인 요소로 작용한다는 사실을 의미한다. 디음으로 MFSFET 소자의 소스-드레인 저항으로부터 dimensionality factor 와 adaptive learning 회로의 펄스 수에 따른 출력주파수 변화를 분석하였다. 이 특성으로부터, adaptive learning 회로의 주파수변조 특성 즉, 입력펄스의 진행에 따라 출력펄스의 점진적인 주파수 변화를 의미하는 adaptive learning 특성을 명확하게 확인할 수 있었고, 뉴럴 네트워크에서 본 회로가 뉴런의 시넵스 부분에 효과적으로 사용될 수 있음을 입증하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 모델링
Ⅲ. 결과 및 논의
Ⅳ. 결론
참고논문
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-000712895