메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Min Ki KIM (서울대학교) Seung Jo KIM (서울대학교)
저널정보
한국산업응용수학회 한국산업응용수학회 학술대회 논문집 한국산업응용수학회 학술대회 논문집 Vol.6 No.1
발행연도
2011.5
수록면
277 - 282 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper reports how to improve the parallel multifrontal solution method that is used widely in finite element analysis. To solve the large scale problems with the limited in-core memory, many direct solvers employ an out-of-core memory. The conventional multifrontal solver was used only with the out-of-core memory. To improve its performance, factored data blocks should be cached in physical memory rather than the secondary storage. To optimize the solver performance, novel ways of managing the in-core memory and caching data is proposed; frontal stack compaction, inverse stack data structure, and selective data caching and recovery were developed. The packing frontal stack and inverse stack removes the additional physical memory for intermediate front data to increase available in-core memory. Selective data caching is an improved technique for increasing the memory space to load the factored data from the out-of-core to physical memory during the substitution phase. The enhanced solver is more efficient than other direct solvers, which can handle the out-of-core storage. The parallel efficiency of the improved method is much higher than that of the original method.

목차

ABSTRACT
OPTIMIZING PARALLEL MULTIFRONTAL SOLVER
PERFORMANCE OF IMPROVED SOLVER
CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-410-000695520