메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Hong Thorn Pham (부경대학교) Bo-Suk Yang (부경대학교)
저널정보
한국동력기계공학회 한국동력기계공학회 학술대회 논문집 2009年度 春季學術大會 論文集
발행연도
2009.6
수록면
59 - 64 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes the hybrid model of autoregressive moving average (ARMA) and generalized autoregressive conditional heteroscedasticity (GARCH) to estimate and forecast the machine state based on vibration signal. The main idea in this study is to employ the linear ARMA model and nonlinear GARCH model to explain the wear and fault condition of machine, respectively. The successful outcomes of the ARMA/GARCH prediction model can give the obvious explanations for the future state of machine which enhance the worth of machine condition monitoring as well as condition-based maintenance in practical applications. The advance of the proposed model is verified in empirical results as applying for a real system of a methane compressor in a petrochemical plant.

목차

Abstract
1. Introduction
2. ARMA/GARCH procedures for estimating and forecasting
3. The advances of ARMA/GARCH model in compared with other approaches
4. The system proposed
5. Empirical analysis
6. Conclusions
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-550-000683456