메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
봉성용 (숭실대학교) 서인식 (숭실대학교) 김문식 (KT) 황규백 (숭실대학교)
저널정보
Korean Institute of Information Scientists and Engineers 한국정보과학회 학술발표논문집 한국정보과학회 2011한국컴퓨터종합학술대회 논문집 제38권 제1호(C)
발행연도
2011.6
수록면
269 - 272 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
추천은 다양한 컨텐츠 중에서 사용자가 원하는 것을 선택할 수 있도록 돕는 것이다. 이러한 추천은 광고주가 자신의 광고에 적절한 컨텐츠를 찾을 때에도 활용될 수 있다. 본 논문에서는 광고를 표현하는 태그와 영화를 나타내는 주제어들을 매칭하여 광고에 적합한 영화를 추천하는 문제를 다룬다. 이 문제의 경우, 광고를 표현하는 태그의 개수가 적고, 영화의 주제어와 성격이 다른 경우가 많아 단순 매칭을 활용한 추천 기법으로는 결과를 얻을 수 없는 경우도 존재한다. 우리는 이러한 문제를 완화하기 위해 키워드 확장을 통한 추천 기법을 제안한다. 구체적으로 각 영화 컨텐츠가 가진 주제어를 위키피디아를 통해 검색하고 이를 통해 주제어를 확장한다. 광고의 태그 또한 위키피디아 검색을 통해 확장한다. 이렇게 확장된 영화 주제어와 광고 태그를 연관성 규칙에 기반하여 매칭한다. 실험 결과 단순 매칭보다 제안한 확장을 통한 매칭이 37.5%의 성능 향상을 보였다.

목차

요약
1. 서론
2. 관련 연구
3. 내용기반 영화 추천 기법
4. 실험 결과 및 분석
5. 결론
감사의 글
참고 문헌

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-000356228