메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
손정우 (경북대학교) 노태길 (경북대학교) 박성배 (경북대학교) 고준호 (경북대학교)
저널정보
Korean Institute of Information Scientists and Engineers 한국정보과학회 학술발표논문집 한국정보과학회 2011한국컴퓨터종합학술대회 논문집 제38권 제1호(C)
발행연도
2011.6
수록면
236 - 239 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
품사 태깅에서 오류는 같은 가중치를 가지는 것으로 간주되어 왔다. 하지만 품사 태깅의 결과를 활용하는 다른 자연어 처리 기술에 태깅 오류가 얼마나 영향을 미칠 수 있는가에 따라 품사 태깅 시 발생하는 오류가 가지는 가중치를 다르게 보아야 한다. 심각한 오류는 이를 활용하는 자연어 처리 기술의 성능 저하를 크게 야기하지만, 사소한 오류는 성능의 저하를 야기하지 않거나 그 영향이 미미하다. 본 논문에서는 품사 태깅 시, 전체적인 성능을 유지하면서 심각한 오류를 줄이는 것을 목표로 한다. 이를 위해 두 가지 점진적 손실 함수(gradient loss function)를 제안한다. 제안한 손실 함수는 심각한 오류에 사소한 오류보다 더 큰 가중치를 줌으로써 품사 태깅 모델이 심각한 오류에 더 집중하여 성능을 최적화하도록 한다. 실험에서 제안한 손실 함수를 활용한 태깅 모델은 기존의 방법에 비해 심각한 오류를 효과적으로 줄일 뿐만 아니라 전체적으로 더 높은 정확도를 보였다.

목차

요약
1. 서론
2. 품사 태깅의 오류 분석
3. 손실 함수에 기반한 SVM 학습
4. 품사 태깅을 위한 손실 함수
4. 실험
5. 결론
Acknowledgement
관련 연구

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-000356137