메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
S. Sedghi (Shahrood Univ. of Technology) A. Dastfan (Shahrood Univ. of Technology) A.Ahmadyfard (Shahrood Univ. of Technology)
저널정보
전력전자학회 ICPE(ISPE)논문집 ICPE 2011-ECCE Asia
발행연도
2011.5
수록면
1,005 - 1,012 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The multilevel inverters (MLIs) utilization has been increased in recent years due to their lots of advantages. The MLI has many switches that increase the probability of fault events. In this paper a fault diagnosis method for a cascade H-bridge 7-level inverter is proposed. The output phase voltage is used to detect fault type and their locations. The histogram analysis is used for feature extraction and these features have been used as input to the Neural Networks (NNs). The multilayer perceptron NNs have been used for fault diagnosis. Simulation results are given for a cascade 7-level inverter at different modulation indices and show that this method is accurate for detection of faults and their locations. This method works correctly under noisy condition and the classification performance for the noise with variance up to 1500 is 100%. The proposed method is faster and less complicated because of using histogram analysis instead of using sophisticated methods such as FFT or wavelet

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. FAULTS AND THEIR EFFECTS
Ⅲ. FAULT DIAGNOSIS METHOD USING HISTOGRAM ANALYSIS AND NEURAL NETWORKS
Ⅳ. SIMULATION RESULTS
Ⅴ. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-560-000300069