메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Seok-Beom Roh (원광대학교) Ji-Won Jeong (원광대학교) Tae-Chon Ahn (원광대학교)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.11 No.2
발행연도
2011.6
수록면
84 - 88 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, a new competition strategy for learning vector quantization is proposed. The simple competitive strategy used for learning vector quantization moves the winning prototype which is the closest to the newly given data pattern. We propose a new learning strategy based on k-nearest neighbor prototypes as the winning prototypes. The selection of several prototypes as the winning prototypes guarantees that the updating process occurs more frequently. The design is illustrated with the aid of numeric examples that provide a detailed insight into the performance of the proposed learning strategy.

목차

Abstract
1. Introduction
2. Learning Vector Quantization Algorithms
3. Fuzzy K-Nearest Neighbors Approach
4. Fuzzy Learning Vector Quantization Algorithm
5. Simulation Studies
6. Conclusion
References

참고문헌 (10)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-028-000566920