메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신동근 (삼육대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제11권 제4호
발행연도
2011.4
수록면
27 - 32 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 수면 2기의 EEG 선호와 주성분 분석(principle component analysis)을 이용하여 수면 장애를 분류하는 방안을 제안하고 있다. 초기 특징을 추출하기 위해서 첫 번째 단계에서는 수면 2기의 EEG 신호가 고속 푸리에 변환(fast Fourier transforms)에 의해서 잡음을 제거하는 과정이 수행되었다. 잡음이 제거 된 EEG 신호를 두 번째 단계에서는 주성분 분석을 이용하여 5개의 차원으로 축소하였다. 마지막 단계에서는 축소된 5개의 차원을 가중 퍼지소속함수 기반 신경망(neural network with weighted fuzzy membership functions, NEWFM)의 입력으로 사용하여 분류성능을 측정하였다. 분류성능에 있어서 정확도(accuracy), 특이도(specificity), 민감도(sensitivity)가 모두 100%로 나타났다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 수면 장애(Sleep Disturbance) 분류모델의 설계
Ⅲ. 가중 퍼지소속함수 기반 신경망 (Neural Network with Weighted Fuzzy Membership Function, NEWFM)
Ⅳ. 실험 결과 (Experimental Results)
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (13)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004501252