메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Soon-Myung Hong (울산대학교) Jee-Ye Cho (우송대학교) Jin-Hee Lee (울산대학교) Gon Kim (울산대학교) Min-Chan Kim (울산대학교)
저널정보
한국영양학회 Nutrition Research and Practice Nutrition Research and Practice Vol.2 No.2
발행연도
2008.6
수록면
121 - 129 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study was conducted to develop the NutriSonic Web Expert System for Meal Management and Nutrition Counseling with Analysis of User’s Nutritive Changes of selected days and food exchange information with easy data transition. This program manipulates a food, menu and meal and search database that has been developed. Also, the system provides a function to check the user’s nutritive change of selected days. Users can select a recommended general and therapeutic menu using this system. NutriSonic can analyze nutrients and e-food exchange (“e” means the food exchange data base calculated by a computer program) in menus and meals. The expert can insert and store a meal database and generate the synthetic information of age, sex and therapeutic purpose of disease. With investigation and analysis of the user’s needs, the meal planning program on the internet has been continuously developed. Users are able to follow up their nutritive changes with nutrient information and ratio of 3 major energy nutrients. Also, users can download another data format like Excel files (.xls) for analysis and verify their nutrient time-series analysis. The results of analysis are presented quickly and accurately. Therefore it can be used by not only usual people, but also by dietitians and nutritionists who take charge of making a menu and experts in the field of food and nutrition. It is expected that the NutriSonic Web Expert System can be useful for nutrition education, nutrition counseling and expert meal management.

목차

Abstract
Introduction
Materials and Methods
Results
Discussion
Literature cited

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-594-004461101