메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Hidekazu Yanagimoto (Osaka Prefecture University) Michifumi Yoshioka (Osaka Prefecture University) Sigeru Omatu (Osaka Prefecture University)
저널정보
한국멀티미디어학회 한국멀티미디어학회 국제학술대회 MITA 2009
발행연도
2009.8
수록면
155 - 158 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We propose a tag clustering with social bookmarking data in this paper. In social bookmarking services, various kinds of data, for example, text data, image data, and movie data, and users use tags, which are keywords added to registered web pages, to administer the registered web pages. However, the tags are not limited to a particular vocabulary and are added to the web pages freely. Hence, though the same tag is added to web pages, it might have a difference of meaning for each web page. Thesauruses are not useful to solve it because of including neologisms and symbols. Hence, our goal is to solve the ambiguity of tags and to classify them according to their meanings.
To achieve the goal we regard adding a tag to a web page as a link between the tag and the web page and construct a weighted bipartite graph between tags and web pages without their contents. To classify the tags according to their meanings, Probabilistic Latent Semantic Indexing is used to analyze the weighted bipartite graph. We carried out evaluation experiments using real social bookmarking data, Buzzurl and confirmed the proposed method classifies the tags precisely regardless of the ambiguity of description and meaning.

목차

Abstract
1. Introduction
2. Related Work
3. Tag Clustering
4. Experiments
5. Conclusion
6. References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004250723