본 논문에서는 운전자의 특성, 도로상황, 경로 추천을 담당하는 에이전트와 같은 동적환경정보(DEI:Dynamic Environment Information)를 반영하여 실시간으로 운전자에게 경로를 추천할 수 있는 시스템을 위해 멀티에이전트에 관한 연구를 수행하였다. DEI는 ?개의 멀티 에이전트이며 운전자에게 최적화된 경로를 제공할 수 있는 경로추천시스템에 활용되는 환경변수이다. DEI가 반영되는 경로추천 시스템은 멀티 에이전트 연구의 새로운 연구 분야라 할 수 있겠다. 이를 위하여 멀티에이전트 연구의 대표적 실험 환경인 먹이추적문제<SUP>[4]</SUP>를 이용하여 새로운 해법을 찾고자 하였다. 본 논문에서는 기존의 먹이추적 실험은 현실성이 결여된 멀티에이전트 연구였기에 기존의 실험환경<SUP>[5]</SUP>과 달리 현실세계와 비슷한 실험환경을 제안을 하며 새로운 전략인 Ant-Q 학습을 적용한 알고리즘과 기존의 방향벡터를 활용한 전략과의 비교를 통해 새로운 환경에서의 성능의 향상을 입증할 수 있었다.
In this paper, a research on multi-agent is carried out in order to develop a system that can provide drivers with real-time route recommendation by reflecting Dynamic Environment Information which acts as an agent in charge of Driver's trait, road condition and Route recommendation system. DEI is equivalent to number of n multi-agent and is an environment variable which is used in route recommendation system with optimal routes for drivers. Route recommendation system which reflects DEI can be considered as a new field of topic in multi-agent research. The representative research of Multi-agent, the Prey Pursuit Problem, was used to generate a fresh solution. In this thesis paper, you will be able to find the effort of indulging the lack of Prey Pursuit Problem,, which ignored practicality. Compared to the experiment<SUP>[5]</SUP>, it was provided a real practical experiment applying the algorithm, the new Ant-Q method, plus a comparison between the strategies of the established direction vector was put into effect. Together with these methods, the increase of the efficiency was able to be proved.