메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오성권 (수원대학교) 김욱동 (수원대학교) 박호성 (수원대학교) 이영일 (수원대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제21권 제1호
발행연도
2011.2
수록면
12 - 18 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 RBF 뉴럴 네트워크에서 은닉층 활성함수에 Interval type-2 퍼지개념을 적용한 새로운 RBF 뉴럴 네트워크를 설계하였다. 퍼지 시스템 분야에서 불확실한 정보에 대한 Type-1 퍼지집합의 성능을 보안하고자 Type-2 퍼지집합이 제안되었으며, 멤버쉽함수 안에 다시 멤버쉽함수를 생성함으로써 불확실한 정보를 좀 더 효과적으로 다루고자 하였다. 따라서 본 논문에서는 RBF 뉴럴 네트워크의 은닉층 활성함수에 type-2 퍼지집합의 개념을 적용하여 불확실한 정보에 대한 모델 성능을 개선하고자 하였다. 나아가 연결가중치를 상수항이 아닌 1차식으로 구성된 다항식을 사용하여 최종출력을 입력-출력의 관계식으로 표현하였다. 연결가중치는 기존의 경사하강법(Gradient Descent Method; GDM) 대신 conjugate gradient method(CGM)을 사용하여 파라미터를 동조하고, 은닉층의 활성함수는 공간탐색 진화 알고리즘(Space Search Evolutionary Algorithm; SSEA)을 이용하여 가우시안 함수의 중심점 및 분포상수를 동조하여 모델의 성능을 개선시킨다. 제안된 모델의 성능을 평가하기 위해 가스로 시계열 데이터를 사용하였으며, 결과를 기존 모델과 비교하였다.

목차

요약
Abstract
1. 서론
2. Interval Type-2 pRBF 신경 회로망
3. 공간탐색 진화 알고리즘
4. 실험결과 및 고찰
5. 결론
참고문헌
저자소개

참고문헌 (13)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-028-004435622