메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강영욱 (인하대학교) 정신철 (인하대학교) 송병철 (인하대학교)
저널정보
대한전자공학회 전자공학회논문지-SP 電子工學會論文誌 第48卷 SP編 第1號
발행연도
2011.1
수록면
54 - 63 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 저해상도 입력 영상을 고해상도 영상으로 복원하는 고속 학습기반 보간 기법을 제안한다. 일반적인 학습기반 초고해상도 기법은 여러 종류의 저해상도 영상과 고해상도 영상의 상관성을 통해 고주파 정보를 사전에 학습하고, 합성 단계에서 학습한 정보를 이용해 임의의 저해상도 영상을 고해상도 영상으로 복원한다. 이런 기존 학습기반 초 고해상도 기법은 방대한 양의 학습된 정보를 메모리에 저장해야만 하는 단점이 있을 뿐만 아니라, 이차원 블록 단위 정합 과정을 거쳐야 하기 때문에 상당한 연산량이 요구된다. 이러한 문제점을 보완하기 위해 본 논문은 일차원 패치 단위 학습을 통해 학습 정보 저장용 메모리 크기 및 연산량을 크게 줄이는 기법을 제안한다. 실험 결과에 따르면, 제안한 기법은 전통적인 bicubic 보간 기법보다 평균 0.7dB 정도 높은 PSNR을 보이며, SSIM도 평균 0.01이상 향상되는 결과를 보인다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 제안 기법
Ⅲ. 실험 결과
Ⅳ. 결론
참고문헌
저자소개

참고문헌 (12)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-569-004065515