메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Shao-Hu Peng (단국대학교) Hyun-Do Nam (단국대학교)
저널정보
한국조명·전기설비학회 조명·전기설비학회논문지 Journal of the Korean Institute of Illuminating and Electrical Installation Engineers Vol.24 No.11
발행연도
2010.11
수록면
30 - 41 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study we propose a new texture feature extraction method based on an estimation of the brightness and structural uniformity of CT images representing the important characteristics for emphysema recognition.
The Center-Symmetric Local Binary Pattern (CS-LBP) is first used to combine gray level in order to describe the brightness uniformity characteristics of the CT image. Then the gradient orientation difference is proposed to generate another CS-LBP code combining with gray level to represent the structural uniformity characteristics of the CT image.
The usage of the gray level, CS-LBP and gradient orientation differences enables the proposed method to extract rich and distinctive information from the CT images in multiple directions. Experimental results showed that the performance of the proposed method is more stable with respect to sensitivity and specificity when compared with the SGLDM, GLRLM and GLDM The proposed method outperformed these three conventional methods (SGLDM, GLRLM, and GLDM) 7.85[%], 22.87[%], and 16.67[%] respectively, according to the diagnosis of average accuracy, demonstrated by the Receiver Operating Characteristic (ROC) curves.

목차

Abstract
1. Introduction
2. Related works
3. Lung region location
4. Proposed method
5. Experimental result
6. Conclusion
References
Biography

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-565-003790428