메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
신덕호 (한국철도기술연구원) 이강미 (한국철도기술연구원) 신경호 (한국철도기술연구원) 이재호 (한국철도기술연구원)
저널정보
한국철도학회 한국철도학회 학술발표대회논문집 한국철도학회 2010년도 정기총회 및 추계학술대회
발행연도
2010.10
수록면
660 - 667 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The system reliability is defined as a probability that the required functionality can be failed in a given time and it is frequently used in the lifespan prediction of systems and the maintenance planning. Recently it presents the goal for MTBF in order that the operating agency may manage the target lifetime and failure frequency when purchasing systems. For the satisfaction of such a goal, the system manufacturer demonstrates the target satisfaction, predicting the Failure Rate of a quantified part unit based on the relevant standard from the development stage. And after the operating agency took over the systems, we analyze the failure distribution occurred during the actual operating period and quantitatively predict the system reliability. In this way, the data are used for maintenance planning such as personnel staffing and spare-parts acquisition which is suitable for the time-varying system reliability. In this paper we present the Weibull model to presume the current MTBF of systems by analyzing the failure information of railway signaling onboard equipment used for about 20 years, and estimate the reliability of onboard equipment by utilizing the actual failure information for recent 5 years. Therefore, if we used the methodology of reliability analysis and results interpretation using field failure information shown in this paper, we could quantitatively estimate the current residual lifespan of worn-out signaling equipment and the failure frequency for the future years, and it is expected for such an analysis system to contribute to a efficient maintenance of the operating agency.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-326-003879270