메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sangwon Lee (이화여자대학교) Kyung-shik Shin (이화여자대학교)
저널정보
한국데이터전략학회 Journal of Information Technology Applications & Management Journal of Information Technology Applications & Management Vol.17, No.3
발행연도
2010.9
수록면
1 - 24 (24page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Most of enterprises depend on a data modeler during developing their management information systems. In formulating business requirements for information systems, they widely and naturally use the interview method between a data modeler and a field worker. But, the discrepancy between both parties would certainly cause information loss and distortion that lead to let the systems not faithful to real business works. To improve or avoid modeler-dependant data modeling process, many automated data design CASE tools have been introduced. However, since most of traditional CASE tools just support drawing works for conceptual data design, a data modeler could not generate an ERD faithful to real business works and a user could not use them without any knowledge on database. Although some CASE tools supported conceptual data design, they still required too much preliminary database knowledge for a user. Against these traditional CASE tools, we proposed a Requirement-Oriented Entity Relationship Model for automated data design tool, called ROERM. Based on Non-Stop Methodology, ROERM adopts inner systematic modules for complete and sound ERD that is faithful to real field works, where modules are composed of interaction modules with a user, rules of schema operations and sentence translations. In addition to structure design of ROERM, we also devise detailed algorithms and perform an experiment for a case study.

목차

Abstract
1. Introduction
2. Related Works
3. Requirement-Oriented Entity Relationship Model
4. Experiment
5. Conclusions
Reference
Author Profile

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-005-003579877