메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
민병원 (목원대학교) 오용선 (목원대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제10권 제10호
발행연도
2010.10
수록면
54 - 67 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
종래에 헬스케어 영역에서 주로 사용해왔던 기계학습 기법을 U-health 서비스 분석단계에 적용하기에는 여러 가지 문제점들이 있다. 첫째, 아직 U-health 분야의 연구가 초기단계에 불과하여 기존의 기법들을 U-health 환경에 적용한 사례가 매우 부족하다. 둘째, 기계학습 기법은 학습시간이 많이 소요되기 때문에 실시간으로 질환을 관리해야만 하는 U-health 서비스 환경에는 적용하기 어렵다. 셋째, 그동안 다양한 기계학습 기법들이 제시되었으나 질환 연관변수에 가중치를 부여할 수 있는 방법이 없어, 개인 맞춤형 질병예측 시스템으로 구축할 수 없는 한계를 가진다.
본 논문에서는 이러한 문제점들을 개선하고, U-health 서비스 시스템의 바이오 데이터 분석 과정을 프로세스로 해석하기 위하여, 개인 맞춤형 질병예측 기법인 PCADP를 제안하였다. 또한 이러한 PCADP를 바탕으로 U-health 데이터 및 서비스 명세의 의미 있는 표현을 위하여 U-health 온톨로지 프레임워크를 시멘틱스형으로 모델링하였다. 또한 PCADP 예측 기법은 U-health 환경에서 판별 기법이 갖추어야 할 조건인 유연성과 실시간성이 기존의 방식에 비하여 향상되었고, 판별과정의 모니터링 및 시스템의 지속적인 개선 측면에서도 효율적으로 작용함을 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 기존의 U-Health 질환 유무 판별 기법에 대한 고찰
Ⅲ. U-health 개인 맞춤형 질병예측 기법
Ⅳ. PCADP 알고리즘 검증
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-003594575