메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Byan Wahyu Riyandwita (경상대학교) Myung-whan Bae (경상대학교)
저널정보
한국자동차공학회 한국자동차공학회 춘계학술대회 2009 KSAE 부문종합 학술대회
발행연도
2009.4
수록면
25 - 32 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Selective Catalytic Reduction (SCR) system has recently being developed by many researchers in order to apply to mobile sources including trucks and marine vessels. The SCR system with a porous media coated by MnO₂-V₂O?-WO₃ for reducing NO<SUB>x</SUB> in diesel combustors is being developed from experimental study by authors. The purpose of this study is to evaluate a different SCR reactor shape for the NO reduction by using computational fluid dynamic (CFD). A three-dimensional model is developed to simulate the selective catalytic reduction of NO with the ammonia as the reducing agent. A CFD model using the porous medium approach is applied to predict the flow field and chemical reactions inside the reactor simultaneously. Modification of the source terms in a commercial CFD package enables prediction of NO reduction. The estimated parameters for NO reduction and NH₃ oxidation are taken from packed bed at wet conditions with V₂O?-WO₃/TiO₂ catalyst. Diesel exhaust gas is simulated by solving the three-dimensional Navier-Stokes, mass conservation, chemico-thermal enthalpy and species transport equations coupled with the themophysical equations for mixture properties. SIMPLE algorithm is selected for the steady-state calculation. The results show that a simpler SCR reactor has a slightly better tendency to remove NO<SUB>x</SUB> emissions but with a trade off of a higher pressure drop value. It is also shown that the porous medium approach in the 3D model has the advantages to predict the full detail of the flow fields as well as the chemical reactions inside the SCR reactor.

목차

Abstract
1. INTRODUCTION
2. NUMERICAL ANALYSIS
3. RESULTS AND DISCUSSION
4. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-556-002787408