메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
임성수 (연세대학교) 이승현 (연세대학교) 조성배 (연세대학교)
저널정보
Korean Institute of Information Scientists and Engineers 한국정보과학회 학술발표논문집 한국정보과학회 2010 한국컴퓨터종합학술대회 논문집 제37권 제1호(C)
발행연도
2010.6
수록면
419 - 422 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
사용자와 환경의 변화에 적응하기 위해서 베이지안 네트워크의 다양한 학습 방법들이 연구되고 있다. 기존의 많은 학습방법에서는 학습 데이터로부터 통계적 방법을 통해서 베이지안 네트워크 모델을 학습하는데, 이러한 접근 방법은 학습 데이터를 수집하기 어려운 문제에 적용하기 힘들며, 사용자의 의도를 데이터의 패턴들로만 학습하므로 직접적으로 사용자의 의도를 반영할 수 없다. 본 논문에서는 대화에 기반하여 사용자의 의도를 직접적으로 수집하고, 이로부터 베이지안 네트워크의 파라메터를 학습하는 방법을 연구한다. 제안하는 방법에서는 사용자와의 대화를 통해서 현재의 모델의 잘못된 점 혹은 개선점을 직접적으로 입력 받고, 이를 바탕으로 베이지안 네트워크 모델을 수정하여 데이터의 수집 없이 빠른 시간에 사용자가 원하는 모델을 학습 할 수 있다. 기존의 통계적 기법을 이용한 대표적인 베이지안 네트워크 파라메터 학습 방법인 최대우도 추정(Maximum Likelihood Estimation; MLE) 방법과 제안하는 방법을 비교하여 제안하는 방법의 유용성을 확인한다.

목차

요약
1. 서론
2. 대화기반 사용자 피드백을 이용한 베이지안 네트워크 파라메터 학습
3. 실험 및 결과
4. 결론 및 향후 연구
감사의 글
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-569-003118826